Skip to main content

Latin1 vs UTF8

Latin1 was the early default character set for encoding documents delivered via HTTP for MIME types beginning with /text . Today, only around only 1.1% of websites on the internet use the encoding, along with some older appplications. However, it is still the most popular single-byte character encoding scheme in use today. A funny thing about Latin1 encoding is that it maps every byte from 0 to 255 to a valid character. This means that literally any sequence of bytes can be interpreted as a valid string. The main drawback is that it only supports characters from Western European languages. The same is not true for UTF8. Unlike Latin1, UTF8 supports a vastly broader range of characters from different languages and scripts. But as a consequence, not every byte sequence is valid. This fact is due to UTF8's added complexity, using multi-byte sequences for characters beyond the general ASCII range. This is also why you can't just throw any sequence of bytes at it and e...

Euler's Equation

Euler's number, e, the constant 2.71828, is the base of the natural logarithms. Given n approaching infinity, Euler's number is the limit of:

\begin{align*}\displaystyle{\displaylines{(1 + 1/n)n}}\end{align*}

It's used frequently abroad across the sciences. It can also be elegantly expressed as an infinite series, like so:

\begin{align*} {\displaystyle e=\sum \limits _{n=0}^{\infty }{\frac {1}{n!}}=1+{\frac {1}{1}}+{\frac {1}{1\cdot 2}}+{\frac {1}{1\cdot 2\cdot 3}}+\cdots .} \end{align*}

Separately, the imaginary unit i, \({\displaystyle {\sqrt {-i}}}\), represents the imaginary solution to the quadratic equation, x2 + 1 = 0. The value can also be used to extend real numbers to complex numbers.

And π is pi, the irrational number we all know and love, roughly approximate to 3.14159, representing the ratio of the circle's circumference to its diameter.

While it isn't absolutely understood, we can join the three numbers in a seemingly bizarre proof that just works.

\( {\displaystyle e^{i\pi }=-1} \)

Comments

Popular posts from this blog

yt-dlp Archiving, Improved

One annoying thing about YouTube is that, by default, some videos are now served in .webm format or use VP9 encoding. However, I prefer storing media in more widely supported codecs and formats, like .mp4, which has broader support and runs on more devices than .webm files. And sometimes I prefer AVC1 MP4 encoding because it just works out of the box on OSX with QuickTime, as QuickTime doesn't natively support VP9/VPO9. AVC1-encoded MP4s are still the most portable video format. AVC1 ... is by far the most commonly used format for the recording, compression, and distribution of video content, used by 91% of video industry developers as of September 2019. [ 1 ] yt-dlp , the command-line audio/video downloader for YouTube videos, is a great project. But between YouTube supporting various codecs and compatibility issues with various video players, this can make getting what you want out of yt-dlp a bit more challenging: $ yt-dlp -f "bestvideo[ext=mp4]+bestaudio[ext=m4a]/best...